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l. Introduction.

We are concerned with infinite extensive games — not necessarily
of perfect information — in which there may be a continuum of alternatives
at some or all the moves; the games may also have unbounded or infinite
play length. Our object is to define the notion of mixed strategy for such
games, and to use this definition fo prove the appropriate generalization of
Kuhn's theorem on optimal behavior. strategies in games of perfect recall
[K]. Also, our methods give a solution to the conceptual problem raised by
McKinsey under the heading "games played over function space" [Mc, pp. 355-
3571,

By-products are that our proof of Kuhn's theorem makes no use of
the rather cumbersome "tree" model for extensive games, that it explicitly
uses conditiénal probabilities (which are implicitly used by Kuhn), and that
it explicitly proves that in a game which is of perfect recall for one
player, that player can restrict himself to behavior strategies (this also
is implicit in Kuhn's proof). OQur proof is considerably longer and more
complicated than Kuhn's proof, but only because of the problems introduced

by the non-denumerably infinite character of the game.

2. Examples.

We give three examples to motivate this study and to illustrate
some of the difficulties.

In our first example, there are two players, the "attacker" and
the "defender"; for concreteness, one may think of the attacker as a
bomber. The attacker starts the play by choosing a course of action (such
as a flight course). The defender has some mechanism (such as radar) for

determining the course chosen by the attacker, and he decides on his
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course of action on the basis of the information he gets from this mechanism.

But the mechanism is not perfect; it only gives an apparent attacker

course x , the true attacker course being distributed around x according
to a known probability distribution (which may vary with x ). Thus the
defender gets some information about the attacker's course, but not perfect
information.

Deﬁote by X the set of all possible apparent attacker courses,
i.e. the set of possible information states of the defender. Denote by Y
the set of courses of action available to the defender. Clearly a pure
defender strategy is a function from X into Y . What about mixed
strategies? If X and Y are finite, then there are only finitely many

pure strategies, so there is no difficulty about defining mixed strategies.

‘But in many cases the most appropriaté model would be one in which X and

Y are, say, copies of the unit interval. It is then still possible to
define some kinds of mixed strategies; for example, we can mix finitely or
denumerably many pure strategies, or we can adopt a fixed continuous
distribution over Y regardless of what information we have — i.e., we
can mix a continuum of pure strategies,‘each of which is a constant function
from X into Y . But is this the best we can do? Can't we mix a
continuum of pufe strategies that are not constants?

A mixed strategy can be thought of as a probability distribution,
i.e. a measure, on the set of all pure strategies. But before one defines

a measure on a ron-denumerable space, one must define a measurable structure

on the space, i.e. one must define which subsets are measurable. It is by
no means clear how this should be done in our case, or even what kind of
measurable structure on the pure strategy space should be considered

"appropriate" for this purpose.

For our second example we can do no better than quote McKinsey [Mc, p.356] :
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"A game has four moves: in the first move P, (player 1) chooses a real

number X 3 in the second move, P2 s knowing x chooses a real number

1 J
vy in the third move, Pl s knowing Yy s but having forgotten X s
chooses a real number X5 and in the last move, P2 s knowing vy and

X5 s but not knowing X s chooses a real number Vo (The payoff is then
some function of the four variables Xl’ Xos yl, and Io <) A pure strategy
for Pl is now an ordered couple {a, f} » where a 1s a real number and
f 1is a function of one real variable (it depends on yl); and a pure
strategy for P2 is an ordered couple {g, h} , where g 1is a function of

one real variable (it depends on x and h 1is a function of two real

)
variables (it depends on Yy and xg) coo

"It is clear thét the payoff function for a game of the type Just
described need not necessarily have a saddle point, and hence it is natural
to suppose that the players will make use of mixed strategies ... " The
difficulties that McKinsey goes on to describe correspond precisely to those
we discussed in connection with the first example.

OQur third example involves the notion of the supergame of a given
game G . This is a game each play of which consists of a number of
repeated plays of G ; the payoff to the "superplay"” usually is defined as
some kind of average of the payoffs to the individual plays. The super-
game and related notionsl have received considerable attention. in the
literature; this is partly because supergames occur naturally in the
applications; and partly because an analysis of a supergame sometimes yields
clues as to rational behavior for a single playo2

Supergames are usually analyzed on a step-by-step basis; that is,

lsuch as that of stochastic game.

cho [Mc, the discussion at top of p. 134]; also [A.] and

(A, §101. +
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it is assumel that each player decides on a strategy for each of the com-
ponent plays separately. These "local” strategies may or may not depend on
the outcomes of the previous component plays, and may be pure or mixed; but
the possibility of mixing a number of pure “grand strategies" for the whole
supergame is usually ignored. OFf course this makes analysis of the super-
game much easier.
The supergame may be considered a game in extensive form, a move

being a choice of a pure strategy for a component play. Obviously it is a
game of perfect recall — at each component play each player remembers what
he knew at ﬁrevious component plays. What we are doing when we limit
analysis of the supergame to consideration of mixed strategies for the
component plays is that we are considering only behavior strategies in the
supergame. Now we lose no generality by this restriction if Kuhn's theorem
on behavior strategies in games of perfect recall5 applies, which is the
case when the originally given game is finité and i1s only repeated finitely
often. Wolfe [W, p.15] has pointed out that Kuhn's theorem may be extended
to games with infinite play length; and it is easily seen that we can also
allow a denumerable infinity of alternatives at some (or all) of the moves.
The difficulties enter when there may be a continuum of alternatives at
some of the moves; in our case this corresponds to a G with a continuum
of strategies.

| What is the importance of supergames of games with a continuum
of strategies? Suppose we wish to consider the supergame of a cooperative
game. To analyze this supergame properly, we must formalize the pre-play

bargaining for each component play. Such a formalization must involve a

5Kuhn”s theorem asserts that in a game of perfect recall each
mixed strategy m has an equivalent behavior strategy, i.e., a behavior
strategy which yields the same payoff as m (to all players) no matter
what the other players do.



continuum of pure strategies for the bargaining session — for example we
already have a continuum in the set of correlated strategies that can be
offered by a player for the consideration of a coalition that he wishes to
for'.ma4 Thus a satisfactory analysis of a cooperative supergame cannot
proceed without first proving an analogue of Kuhn's theorem for the con-
tinuous case. Indeed it was this problem that originally motivated this

study.

3. Mixed Strategies.

Let us take a closer look at the first example in the previcus
section; take X and Y +to be copies of the unit interval. We shall need
to consider probability distributions on ¥ and ¥ s, and as we remarked in
the previous section, this involves defining measurable structures on them.
Any such measurable structure should be rich enough o enable us to define
the probability of an interval; this means it would have to contain ail
Borel sets. Let us denote by I the unit interval on which has been imposed
a measurable structure consisting of all the Borel sets; and let us once and
for all5 take X and Y +to be copies of I .

Henceforth we will write "m—" for ™measurable.”

e [a,, §6] or [a, §10].

5we have adopted the smallest structure that fills our needs. An
overly rich structure is self-defeating. For example, if the structure on
X consists of all subsets, then the only measures on X are purely atomic
(under the continuum hypothesis [S, pnlOY])g if it consists of all Lebesgue
measurable sets, then the only measures are sums of absolutely continuous
and purely atomic ones (thus excluding all those with a singular non-atomic
component ). We therefore see that increasing the set of measurable sets
beyond a certain point actually reduces the set of available measures. Ir
we want all intervals to be measurable, the largest set of measures is
obtained if we let the structure consist of the Borel sets. (In this con-
nection we remark that there is a confusing misprint in [Mc, p.357, line T7];
here "ILebesgue measurable" should read "Borel.")
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Suppose the defender has adopted a strategy f , i.e., a function
from X into Y , and that the action of chance and the strategy of the
attacker have induced s probability distribution on X . The strategy f‘,
acting on this X - distribution3 should induce a distribution on Y .

Does it? Buppose B( Y is a Borel set. The probability that a member
of B 1is chosen by the defender
=prob {x : f(x) ¢ B}

prob ffal(B)} .

il

This expression is meaningless unless fal(B) is measurable in X ! The
same holds for all m— subsets B of ¥ . Tn order to have an induced dis-
tribution on Y , we want the inverse image under f of a measurable set
in Y to be measurable in X . In other words, we want f to be a
measurable transformation. So we redefine a pure defender strategy; it is
not just any function from X dinto ¥ s but an m— transformationa6 We
denote by YX the set of all m— transformations from X into Y .

A mixed strategy, then, is a probability measure on YX , the
latter having been endowed with an "appropriate" measurable structure. Let
us define a function ¢ YX ®x X —> ¥ by of, x) =rf(x) . Suppose we
again start out with a distribution on X s and suppose that the defender
has chosen a mixed strategy; we wish to calculate the induced distribution
on Y . For m— sets BC Y, the probability that the defender chooses a

member of B

= prob {(f, x) : £(x) e B]}

prob {(f, x) : ¢(f, x) € B)

prob {¢=1(B)] .

il

This redefinition of pure strategy is a consequence of the demand
that distributions on X induce distributions on ¥ . Besides being intui-
tively desirable, this is absolutely necessary for the formal analysis, as
the reader will see later. Perhaps the most compelling intuitive argument,
though, is that this is needed so that = pair of pure attacker and defender
strategies should induce a payoff distribution, e.g., that we should be able
to assign a probability to the attacker's payoff being positive.



As before, we conclude that the structure R must be chosen so that o

is an m— transformation. But as we have shown elsewhere [A53 Ah] s Tthere
is no structure R for which this is 80; no structure on YX is
"appropriate™!

There are two ways out of the blind alley into which we have
been led by our apparently sound reasoning. The first is as follows:
Recall from the previous section that it is possible to randomize over
certain subsets of YX s €+8., Over denumerable subsets of YX and over
the set of all constants in YX ;3 on the other hand we have Just seen that
it is not possible to randomize over all of YX - This suggests that
instead of trying to define mixed strategies on all of YX s We try to
characterize those subsets of V& which will not lead us to a "blind alley™
of the type we have encountered above, and limit ourselves to defining mixed
strategies over such subsets.

For each F ( v » define Pp t FXX—> Y by ch(f, x) =f(x) .
A structure R on F is called "admissible" if ®r » considered as a
mapping from (F, R) x X into Y , is an mw— transformation. If F has
at least one admissible structure, then F itself (és an abstract set
without structure) is alsc called admissible. The admissible subsets of
YX are precisely those sets whose members can be "mixed," i.e., those
sets over which mixed strategies can be defined. Admissible sets have
been studied in considerable detail elsewhere [A59 Au}o Here let us quote
only the chief result of those studies ag it applies to our situation:

A subset of XX is admissible if and only if it is contained in some Baire

class (which may have arbitrarily high denumerable order).
We are now ready for the definition of mixed defender strategy
under the first "way out™: A mixed defender strategy is a triple

(F, R, n), where F is an admissible subset of YX » R 1s an admissible
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structure on F , and u is a measure on the w— space (F, R) . Thus in
choosing a mixed strategy, the defender must choose not only a probability
measure as usual, but also the w— space on which it is to be defined.

The second "way out"” uses a completely different approach. Iet
us recall the intuitive meaning of a mixed strategy: It is a method for
choosing a pure strategy by the use of a random device. Physically, one
tosses a coin, and according as to which side comes up chooses a corres-
ponding pure strategy; or, if one wants to randomize over a continuum of
pure strategies, one uses a continuous roulette wheel. Mathematically, the
random device — the set of sides of the coin or of pecints én the edge of
the roulette wheel — constitutes a probability measure space, scmetimes

called the sample space; a mixed strategy is a function from this sample

space to the set of all pure strategies. In other words what we have here

is precisely a random variable whose values are pure strategies. Up to

now we have been working with the distribution of this random variable; we
now suggest that the use of the random variable itself will simplify matters
considerably.

Let us denote by O the measure space that results when we
impose Lebesgue measure on T . All of our sample spaces will be copies
of @ . The intuitive justification for this is that every “real-life”
random device is either "discrete,"” “continuous,"” or a combination of the
two; that is, the sample space involved must either be finite or denumer-
able, or it must be a copy of I (with a measure that is not necessarily

7

Lebesgue measure). All such random devices can be represented by random

variables whose sample space is actually a copy of Q .

YPhysicallyﬁ of course, all sample spaces are discrete and even
finite; but it is often convenient to use a continuous or a denumerable

model.



-In our example, therefore, we should define a mixed strategy to
be a function from § to the space YX of all pure strategies. We can
expect that not all such functions will be “eligible" as mixed strategies,
because cof the by now familiar condition that a mixed strategy and a
distribution on X must induce a distribution on Y . Fortunately, the
appropriate condition is not that the mixed strategy as defined above be g
measurable transformation, because this would again involve defining a
measurable structure on YX . To state the correct condition, we recall
that to every function from Q +o YX there is a corresponding function
from O xX—> Y ; 40 f : Q —> YX there corresponds the function
g : 8 XX—> Y defined by g(w, x) = f(w)(x) . The correct condition

on a mixed strategy is that this corresponding function be an m— transforma-

tion. Thus it is most convenient to redefine a mixed strategy to be an
m— transformation from 0 x X into Y , and this is the definition we
adopt .

As they now stand, both of the above definitions of mixed strategy
apply only to the highly simplified situation treated in the first example
of the introduction. However, both definitions can be exbended without
difficulty to more complicated, many-move games. We prefer the second
definition, both because it is inherently simpler and more intuitive, and
because it bypasses very great difficulties which are encountered in the

proof of Kuhn's theorem if the first definition is used.

The relation between the two defihitions — similar to that
between a random variable and its distribution — will be explored in

detail in section 11.
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4., Extensive CGames.

We first give the formal definitions, then discuss their intui-
tive meaning and their relation to other definitions in the literature.

An m— space is called standard8 either if it is finite or
denumerable with the discrete structure (i.e. all subsets are measurable)j
or if it is isomorphic9 with I . Most m— spaces that one "encounters in
practice"” are standard; for example, any Borel subset of any Fuclidean

space or of Hilbert space is standard.

Definition:

A game from an individual player's viewpoint, or simply a game,

consists of

(1) A (finite or infinite) sequence ¥, ¥, ... of standard

m— spaces called action spaces;

(ii) A corresponding sequence X5 Xy5 oo of standard m— spaces

called information spaces;

(iii) A set Z called the set of strategies of the opponents;

(iv) A sequence of functions g ¢ 7 X Yi X oee X ¥i=l — X, s

called information functions, which for each fixed 2z € Z , are

m— transformations on 3 oo [, into .3
1isfo il 2 X Ylml Xi H

(v) A standard m— space H called the payoff space;

(vi) A function
h ¢ Z ¥ %X Y., X .oo —>H

called the payoff function. The payoff function is assumed to be

an wm— transformation for each fixed 2z ¢ Z .

- Intuitively, the game is played as follows: First the “"opponents,"

8This use of the word is due to Mackey [M]

9An isomorphism is a one - one correspondence that is measurable
in both directions.



-1]=

including chance, each pick a strategy; the composite of these strategies
is a member =z of Z . Next, cur player is informed of the value of
gl(z) ; this is a member of Xl » and represents our player's state of
information for his first move. Our player then chocses a member ¥y of
¥, . Next, he is informed of the value of gg(zy yl) ; this is a member
of X2 > and on the basis of this he must choose a member Yo of Yé .
Next, he is informed of the value of g5(zp ylg yg) ;s the game contipues
in this way. The payoff is determined as a function of the strategy =z
chosen by the opponents, and the actions Y12 Yoo eoe taken by our player.
Usually it will be most convenient to take the payoff space H to be a
Euclidean space of dimension equal to the number of players. However this
need not always be soglo and since we do not use any particular form for
H in the sequel, we have left H as general as possible.

Note that up to the present we have not assumed that our player
remembers anythiﬁg on the occasion of a given choice except what he is told
by the value of the Ffunction gi - This can be made plausible if we think
of the choices of Y12 Yoo oo 88 being made by distinct agents of our
player, who are not allowed to communicate with each other.

The meppings g and h have been assumed to be m— transforma-
tions in the variables Y for the familiar reason, namely to ensure that
distributions on the domain spaces induce a distribution on the range
space. This has not been required for the variable 2z 1in order to avoid
the necessity of defining a measurable strucﬁure on the strategy space 27 ,
which leads to difficulties, as we have seen. The results should thus be
conceived as holding for each 2z separately. 1In a particular case it

might be possible tointegrate over some components of z (e.g. that

oFor instance, Tor some pﬁrposes it is counvenient to consider
the payoff to a supergame as being simply the sequence of payoffs to the
individual plays, rather than the average (in some sense) of these rayoffs.
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belonging to chance); this can be done without difficulty after the results
have been established for fixed 2z .

The above definition is a compromise between the normal and
extensive forms of a game. The game has been retained in extensive form
for our player, but has been normalized for the other players. FEven for
finite games, most of the important thecrems in extensive game theory, such
as the theorems on games of perfect information and on games of perfect
recall; are best stated for one player at a time; the process of normals
izing the game for the other players enables us to focus attention on the
single player‘and thus simplifies the proofs.

Not all finite extensive games in the sense of Kuhn [K] are
included in the above definitions; however all games of perfect recall
are included, as are all finite extensive games in the sense of
von Neumann and Morgenstern [N-M]. The condition for a Kuhn game to be
included is that the game can be "serialized," time-wise, for the player

in question. For example the game in Figure 1 does not come under our

definiticn if the information sets A and B belong to the same
player, but does come under our definition if they belong to distinct
players. Of course the possibility of serialization is not at all

equivalent with perfect recall (but the latter implies the former).
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Next, we define games of perfect recall.

Definition: A game is said +o be of perfect recall if there are
sequences of m— transformations

u% 2 X —> ¥, , j<i
dJd 1 dJ

and
t% X, —> X s J <i
J J
such that
ulg (2, . ,... V. 1) =y
J'i.ﬁ l,? 2 i‘z’l J-
and

tlg, (2 Yy seees Voq) =802, ¥, yeee, v, o) .
Jl 3‘15 3 jel J 2 l? 3 J_l

Intuitively, u is the function by which a Player remembers what
he previously did, and t is the function by which he remembers whét he
Previously knew.

Note that we have giVen an analytic definition of games of
perfect recall which, while retaining complete generality, avoids the
cumbersome geometric tree model. This has been made Possible by the device

of normalizing the game for all but one player.,

D. Mixed and Behavior Strategies: The Formal Definitions.

We may assume without loss of generality that the Xi and Yi
are all copiesll of I ; for if one of them is only finite or denumerable,
we can always add a continuum of identical copies, The cartesian products
XiXi and Xiii will be dencted X and ¥ respectively, and their
members will be denoted X = (xly X5p oo ) and y = (yly Vps oo ) o We
remind the reader that the phrase "sample space" means a copy of Q .
Sample spaces will be denoted by @, Q5 Qi s etc.; the measures on them

by A5 A, xi s ebtc., respectively.

lFor the definitions of I and Q see section 3




In this and the following four sections, the word "subset, " when
applied to an = space, will always mean "measurable subset, " and

BCY, when ¥ is an m— space, will mean B is an m— subset of v ."

Definiticn:
=t b1 O S

A mixed strategy is a sequence m = (mlg Mys eoo) oOF
m— transformations m, % Xi —z%»Yi s Where Q ig a fixed
sample space,

A behavior strategy is g sequence b = (blﬁ b5 coo) oOF

m— transformations bi RS X —~9>Yi s Where - {Qlj Qs oo} is
12
& sequence of sample spaces.
With a behavior strategy b we may associate s mixed strategy
b .
m=mw-, with sample space @ = Ql X Q2 X o0 , defined by

mg(g% x) ::bi(ﬁﬁy x) , where w = (aﬁy @y oo ) o Intuitively, @E’ may
be thought of ag having the same "effect” ag b
Every triple (@, m, z) consisting of a member of the sample
space, a mixed strategy, and s strategy of the opponents uniquely determines
a member v(w; m, z) of I; ve= (vl5 Vo ees ) is defined recursively by
v, =mg (e g (2 vy, ooy v, L))
Intuitively, vV 1s the sequence of choices that actually occur when the

gawe is played. Purthermore every pair (@} z) uniquely determines g

distribution (ioe03 measure) U on ¥ 5 this is defined for 2(:_X by
n(B) = R(B; m, 2) = A {0 : v(d; my z) e B}

Intuitively, pu 1is the distribution of the random variable v( e m, z) .
Two mixed strategies are said to be €quivalent if they determine the same

distribution on X

2 ' .
See section 10 for a discussion of this definition.,




~15-

6. Kuhn's Theoren.

A behavior strategy b and a mixed strategy m are said to be
equivalent if ‘1 and gg are equivalent. By definition, for every

behavior strategy there is an equivalent mixed strategy. The converse is

Kuhn's Theorem. TIn & game of perfect recall, every mixed strategy has an

equivalent behavior strategy.

(. Lemmas for the Proof of Kuhn's Theorem .

Our first lemma deals with 8 property of conditionsl probabili-

ties. -

' Let ¥ and ¥' ve copies of I, let Q be a sample space with
‘measure' Mslet g Q%Y —> s and Vi Q —> Y Dbe m— trans-
formations, andflet Bﬁ C ¥ and B C Y . According to a known theorem
[H, p. 210, example 5], the conditional probability

| cond MT | v(w) = y)

caﬁ be de,.f“j’.,ned-l5 as a probability measure on the measurable subsets T of 0 5
for each fixed Yy € ¥ . When we use the symbol cond A and similar symbols,

we shall henceforth mean this probability measure@l

Lemma A. Under the above conditions :

l(y)

b

Q/\ cond M{w : g(w, y) € BT) | v(w) = y)an v
B

= Mo : glw, vin)) e B' and v(w) ¢ B} ..

Remark The unusual feature of the integral on the left-hand side is that
e

15We trust that our notation for conditional probabilities, though
nct sténdard, is sufficiently transparent as to cause no confusion. There
are good reasons for using it rather than one of the standard notations.

lhActually cond A is defined uniquely only up to a set of 'y
which is of (kv“l) - measure O . But all our statements will hold for any
particular version of cond A » 80 the particular choice can be made
arbitrarily.
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the subset of O of which the conditional Probability is being taken —
the set fw : g(w, y) Bt} n~:varies'with the condition y . TIf it were
not that cond A isg defined éssentially uniquely as g DProbability

measure (for example if @ were not standard), the integral would have

no meaning, because cond A\ could be assigned an arbitrary value for

each y . What the lemms says 1s that since the condition asserts v(e) =y ,
we may substitubte v(w) for ¥ on the left side of the sign, and then
obtain the correct answer by usingkthe usual theorem about integrals of
conditional probabilities.

Proof. Iet ¢ CaxX bve defined by ¢ = gzl(Bf) - Denoting by Cy the
section {w : (@, y) e ¢) > W& obtain that lemma A is equivalent to

1

(A1) f cond A (¢¥ | v(w) = y) an v (y)
5 \

Mo s (0, v(o)) e ¢ ang v(w) e B} .

il

Both sides of (A1) , as functions of € , are measures on Q@ XY (since
cond A is a measure on {0 for each y ). Hence it is sufficient to prove
(A1) when ¢ is g rectangle T x A in £ x Y . In this case the left

side of (A1)

q[\ cond MT | v(w) = y)aa le(Y)
ANB

M N v‘l(A N B)}

=NMw s we I ang viw) € A and v(w) & B}

fi

Mo (0, viw) e 'x A and v(w) ¢ B)
= Mo : (o, v(w) € ¢ and viw) € B) .
This demonstrates (Al) when ¢ ig g rectangle, and (Al)~and therefore
also Iemma A follows in the general case.
Now let us return to our game. First we introduce some further
notation. We write Ei = Yi X oeoo % Ii o Similarly, for y €% ; we

write v = (yli coes yi) o If B, (jil s By szé 5 o+ 5 then we write
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=B, X ... x Bi s and B = Bl X 52 X ooo o The symbol B will always
be reserved for a rectangle of this kind.

Let us consider a mixed strategy m with sample Space Q , a
strategy =z of the opponents, and a Sequence y € ¥ . Then Ffor each
. . i i i i
1 =1,2, ... we may define s sequence v = (Vlj Voo see ) = v (o, ¥ m, z)
inductively as follows:

v, = V. s Tor g§ <i

i . .
mJ(a% gj(29 Xﬁ=l)> s for § >4

We have Xl =V , and vi = mi(a% gi(zg Xi=l)) > Which is the decision on

the iEE play if zi=l has been chosen on the previous plays. Denote

(vi ) e k >1).. Note that v- depend nl '
52 tees Vo y v (for > 1)« Note tha VJ epends only on Y54

rather than on all of Y » 80 We may write Vﬁ(a% lials m, 2) rather
than vg(a% Y5 m, z) . As m and z will be fixed throughout most of

l) s and omit explicit

this discussiomj we will usually write v?(a% z&m

mention of m and z . The expression vé( ., linl)ul(Bj) means
{w : V;(d% 7 l) € Bj} - For future reference note that
A5 i, o
(B1) v, (a, (¥, _1» v} (o, Ximl)))«—nj(d% Y1)

Next, define a sequence Ay A, A, ... OF measures on  as
17 Ip
follows: ‘

i P —
Azi(P) = cond Azinl(rjﬂ vi(w v, ) = v,;)

(where of course %y stands for A ).

_O
Temna B. lLet B, Cfﬁ& peees B CfYk - Then !
A k -1 i -1
k/ 0oa u/\ dA v ( T,y ) (7. ) «o. dAr v e s Ve ) (v.,)
B, B Lkl ¥ Tkl k L5 1 -1 1
i k
A~ =1 n
= %Y Vk( 5 lial) (Bk) .




- 18-

Proof. We use reverse induction on 1 . The start, at i =k s 1s

immediate. For the inductive step (i +1 implies i) we have

5B B

k

il

AT . L2141 i -1
o G ) TE Jar o viCe Ly ) (v,)

Iy

il

J,
f cond A (o F% (o, (. ) 7)) e B |
B Ximl k. “f-1 i k

i, _ i, =1
Applying Iemma A with ky instead of A\ 5 Bi instead of B 5
" el .

Y, instead of Y, B;‘”"l instead of B' vf;””"l( "5 (3,95 ) instead
£ T instead or v a v (e 4 YR . obtai
of g, Y instes of ¥' , an vy (ieg yr lJ insteadcof v yWe obtain that
the last €xpression above

- R Aiﬁ'}‘l . i Ai"ﬂ'l

= }\Ximl{m PV (e, (_Ximlg vy (a, Ziml))) € B

and v} (a& 7y l) €BJ,

and from (Bl) we deduce that this

_ .o i
= %Ziml{&sa k(Qb I, l) € k}

This completes the induction.

‘Corollary C. Iet By Cyy 5eney B, CY, . Then

f f k( " Y 1) l(yk) dhvzl(yl)

Vkl

=)

Corollary D. Iet f be an m- transformation from 'Yk to the real
= o L2

numbers. Then
) | 'k -1, =1
f ° o o f f (‘Xk) d}\,y Vk( 3 Xk."’l) (yk) e ow d)\Vl (yl)
Bl B.K ka1

= f £y, ) dkz;l(;_{k)
B




Proof. If f 1ig the characteristic Tunction
opiped in Ek > this follows from Corollary C.

the usual methods.

8.

Further Iemmss.,

tions can be

of a rectangular parallel-

The general case follows by

The object of this section is to prove that a family of dlstrlbu=

"inverted" to vield a family of random variables.,

Iet £ %be g hon-decreasing upper semi-continuous functionl5

For

O0<y <1 define

if the set in curly brackets

is non-empty

if it is empty.

Lemma E.
o I such that £(0) > o and f(1) =1 .
£ (y) - sup {x ¢ f(x) <y},
0 9
Then
(1) 1 e non-decreasing
(2) 1 1s upper-semi-continuous
) f“l(O)_z o, 1) =1
() @t -
Proof. For the Proof, note that we can restate the theorem as follows:

let £ be a non-decreasing upper-

semi-continuous Tunction on

f-1, 1] such

For

=1 E y <1 define

that f(x) =x for x <o and £(1) =1 ,
=1
Fo0) =suwp (x ¢ £(x) <y)
Then
-1 .
(1) = 1s non-decreasing
(2) 77 is upper-semi-continuous
(3) £ 1) s £ %) = x for x <0
“1,-1
) (£ =f ,

We now proceed to prove the lemma in thig restated form.

15

f(x) = lim f(

YR

= lim sup f(y)
¥ x

i.e,

v) .
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(1) is obvious.,

(2) First we have; by (1), that

lim f“l(z) > lim f“l(y): f”’l(

Z=Y & Zy -

v) .

To prove the opposite inequality, let fml(y) =17 . Suppose

lim le(z) >n , say
75y -

lim fnl(z) =70 4+ €,
7Y 4

Then for each 2z >y , fﬁl(z) >N + €, and hence sup {x : T(x) <z} >n +¢
for all such z . Hence it foilows that for ali Z >y , there is an

X 21 + & such that f(x) S 2z 5 in particular, since ¥ 1ig non-decreasing,
it follows that for all » > Yy s f(n +e) <2z . But from this it follows

at once that f(n + g) S ¥ 5 which contradicts sup {x : f(x) Syl=n<n+c¢e.

Hence

1im 1
2=y 4

(z) < £1(y)

and the proof of (2) is complete.
(3) is obvious.
) ret £71 o g - Then
&%) = ow [y ¢ aly) <x) .
Suppose gml(x) >f(x) .« Then
sup (v : g(y) <x} >f(x) .
Hence 3y > f(x) such that gly) <x ,

Hence 3y > f£(x) such that sup {z : f(z) <vl<x.

Now
sup {z 2 £(2) <y} <x <==> (£(z) Sy =z <x)

= (2 > x = f(z) > y)
<= (¥, >x)(£(z) >vy) .

Hence (Fy >T(x))(Vz >x){(f(z) >y) .
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But since f(x) > y for all z >x s 1t follows from upper semi-continuity
that f(x) >y ; this contradicts y > f(x) . So we have proved gml(x) < fx) .
To prove the opposite inequality, suppose

&) < r(x) .
Then sup {y : g(y) <x) <f(x), say sup {y : g(y) <x} =£(x) - ¢ .
Hence Vy(g(y) SxX =y <f(x)-e).
Hence \/y(sup {z ¢ f(z) <y} <x =y < f(x) - €) .
Hence Vy(Vz(f(z) Sy = z <x) =y < f(x) - €) ,
Hence

(E1) Vy(Vz(z >x = fz) >y) =y < f(x) - €) .
Since f is non-decreasing, we have gz > x ==>7(z) >1(x) >f(x) - -26— .
50 if we set y = f(x) - §€~ s then (Vz)(z >x =>71(z) >y) , but clearly
not y <f(x) = € . Hence we have & ¥y that contradicts (El). This

completes the proof of (%) and hence of Iemms E.

Let X and ¥ be copies of I , and let & be the O=ring of
m— sets in Y . Tet B:Xx&B —> g be a function which is measurable

in X for each fixed B € 74 and a probability in & for each fixed

X e X .

Lemma F. Under the above conditions, there is a family of random variables

whose distributions are given by B ; more brecisely, there is an m—

transformation b o X x @ —> Y such that

Mo s b, o) e B} = B(x, B)
for each x € X and B ¢ &
Proof. For y e v s define
Tf(Xp y) = 6(Xy [09 yl) .
Write TEX = n(x, °) H er is a nonadecreasing upper=semi-continuous func-

tion of y , so by lemma E it has s well-defined inverse, which we denote bx ;
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set b(x, w) =‘bx(w)

Lemma F1. b( - 5 ®) 1is Borel measurable in x for each fixed w .
Proof. For B ¢ B we must show that {x - b(x, ®) . B} is measurable

in X . It is sufficient to show this when B is of the form [oO, yo)
Now
x: b, o e [0, yO)}

={x: sup {y : n(x,y) < w} <)

={x : 3 rational r < Yo such that =n(x,r) > )
= Ur<y' (x ¢ n(x,r) > @)

0
= Ur<y© ‘{X e P(Xﬁ [Og I“)) >CU}

union of Borel sets = a Borel set.

i

This completes the proof of Lemms F1.

Next we show that D is measurable in the two variables simul-
taneously. Tt is sufficient to prove that sets of the form [ybj 1] have
measurable inverse images. Indeed,

v 10 - (6 0l 5 bl @) 3y )

i

{(x, ® : (V rational s),(s > @ => blx, s) z-yo)}

(because of upper semi-continuity of b)

i

=0 @) 0 o, ) 2Vl or (s <@}
(e @) s v, e 2y U L ) (s < w)))

N (= 2 v(x, s) >¥5) xQUX x5, 1])

il

il

and this is Borel measursble in X xQ (by Lemma Fl).
Finally, we show that
Mo s bx, @) ¢ B} = B(x, B) .

It is sufficient to demonstrate this when B is of the form [0, ¥1 . Then

Mo :b(x, @) e [0, v]} = Mo b(x, ®) <y)
1

\

=sup {w : b_(w) <y} =D " (y)
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1 = -
But b =x"; s0 b~ =g (by Lemma E).
X x X X

Mes vl o) € [0, y1) =) - x (y)
= ﬂ(xg Y) = B(X3 [Oy y]) 9

and the proof of Temma F is complete.

9. Proof of Kuhn's Theorem.

Fix m ; we wish to find an equivalent behavior strategy, which

we will call b . We first define the distributions Bi of the randem

variables bi( ° 5 %) , and then only the random variables themselves,

For B CjYi and x ¢ X; , define

Bi(Bg x) =cond N ({w ; mi(&% x) € B}]miml(a% t§=l<x)) -~

- uiml(x)ﬂ coo | my(a, ti(x)) = ui(X)) .

The expression on the right is to be interpreted as an iterated conditional

probability, similar to the definition of %Y - To underscore the simi-
=1
larity, note that
i, . . =1
(IG-) ﬁi (B§ gi (Z," Zi’:l)) - >\“ V“( 9 Zi“l; IE}' Z) (B> °

5.1 1

According to ILemma F we can find bi so that the Qi( 5 X) are

the distributions of the bi( * 5 X) , i.e. such that

2] j S b =
(x2) N Lay s b, (@, x) e B) B, (B, x)
" % o 3 T * —
Let Bl CjYi 5 B2 CﬁXé » ve» 3 TOr each n write En = En x Y£4J~x oo To
show that m and Db are equivalent, it is only necessary to show that
* * b

(k3) L(B s m, z) = W(B 5 m=, z)

for every 2z ¢ 72 ang every n and arbitrary choice of the Bi 0
Let us write @ for (dﬁﬁ cooy a?) - We first note that

35(935 §£ s z) depends only on & rather than on all of @ . In fact,

if we define w_(w ) recursively by
= -

Wn(ﬂh) - bn(&%’ gn(zﬁ Eﬂ=i(ﬂ%=l)>) ?
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then

(Kb) | v (@)

il

vn(g ; EE 5 Z) .
Henceforth we will use v for m  exclusively (unless we explicitly indi-
cate otherwise); thus v(w) will mean v(w; m, z) , and similarly for
v§ s etc.
The proof of (K3) is by induction on 0 ; the induction is easily

started (at n = 1). TFor the inductive step (n implies n + 1) note that
1 * b

Aw,m By = w5, 2)
because of (K4), and
-1 *
My, By =u@B s m, z)

Since by induction hypothesis the two right sides are equal, it follows
that the left sides also are; but since this holds for all EDK: Xn , it

follows that

’ =1 =1
(5) klﬂED, =M n
a8 measures on zn. «  Next, we have
* b
w(B 5 o=, z)
=X {@ : Eﬂ l( n%l) € l“D’-nm"-l}
_é-tl{—n-hlg n-ﬂ-l(nhl)eB'l’w(wJCB}
:%+ﬁ%wl?b+lhwlﬂ%+l( %@w>)€%ﬂ?%&%)e%}
k/;_v‘ml(_lén)%n-u- R T N 'S (@))€ B, 1dan (@)
= ) B 1B, e, (e v ) ()
p A+ 17ne 17 Sna 1t Iy —n—-n dn’ ?
=n

(because of (K2) and the change of variables g, = En(g%))

_ ’ n+ 1 . =1 =L,
B u[; A Vn+ 1 ( 7 zh) (B - l) dkv (Zﬁ)
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(because of (K1) and (X5))

1l

M

n+l =1 n -1 =1
f f A, ‘n+1( s V) (Bn+l)d>\,y vn( R Zn»=1> (;yn) oee ANV (yl)
Bl Bn £ -1

(because of Corollary D)

n+l, =1 =1
fB fa fB d.x.,zn Va0 T2 L) T ) e AT ()
1 n

]

n+l
=1
=N Tnu1 (En+l)
(because of Corollary C)
*
=u(B 5 m, 2) .

This completes the proof of Kuhn's theorem.

10. Remarks on the Definition of Behavior Strategy.

Regarding the definition of behavior strategy given in Section 49
it might be objected that the intuitive idea of behavior strategy demands
that the functions bi( * 5 X) be mutually independent random variables
for distinct x , even when we are dealing with a single i . To demand
this, though, would mean that we must have s non-denumerable number of
mutually independent random Variablés on the same sample space, and this
is in fact impossible (when the phrase “sample space™ is used in our
restricted sense, which corresponds to thg intuitive idea of a random
device). Fbr example, suppose we wish to construct a non-denumerable humber
of random variables on the same sample space Q , representing independent
Bernoulli trials with probability % of success. If we associate 1 with
"success" and O with "failure," this means that we must have non-denumerably
meny characteristic functions of Borel subsets of O of measure %=, and
these characteristic functions must be mutually independent. Let the
subsets of O that are involved be denoted Sx > where x runs through

the non-denumerable index set X . We have K(SX) = % s and from the
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independence assumption we obtain A(SX N Sy) = % for distinet x and
Y - Now let us call two Borel subsets of 0 equivalent, if they differ
only by a set of measure 0 ; denote the equivalence class of S vy
{s} . Next, let us construct the metric space whose points are equivalence
classes of subsets of 0 s and where distance is defined by

({8}, (T)) =A(S - 1) +A(T- 5) .

. This means that

]

rof -

Then for distinet x,y ¢ X , we have p({SX}g {Sy})
there is a non-denumerable set of points in our metric space such that the
distance between any pair of points in the set is % - It follows that the
metric space cannot be separable; but it is known that it is separable

[H, p.168]. So our assumption about the existence of non-denumerably many
random variables on representing independent Bernoulli trials is false.
Similarly (but in a somewhat more complicated way) it can be proved that
there cannot be any non-denumerable set of independent random variables

on the same sample space.

It may seem that this makes any genuine analogue of Kuhn's theorem
in the continuous case impossible. What we have shown is that in a game
of perfect recall, one may restrict oneself +to deciding on strategies for
each of the stages separately, rather than deciding on a grand strategy
at the beginning of the game. However, one decides at each stage before
recelving the information for that stage, rather than afterwards, and in
this our theorem apparently is weaker than Kuhn's.

The difference, however, is illusory, and there is no real loss
of strength in our thecrem. We have seen that the bi( ° , X) must
necessarily be correlated as x ranges over Xi s> simply because of the
cardinality of Xi - However, this correlation is entirely irrelevant to
the game, and cannot affect the payoff in any way. In fact, the payoff

distribution depends only on the distributions of the individual bi( °y X) 5
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and not onm any of the joint distributions (this follows from section 9).

In other words, the bi( ° , x) are correlated (for fixed i and varying x )
not because this correlation is necessary to mimic the effect of the given
mixed strategy m ; in fact, if this were necessary (as it may be when
the game is not of perfect recall)g this kind of in-stage correlation
could not accomplish itglé and we would have to resort to interstage corre-
lation. The correlation is rather in the way of being‘an irrelevant mathe-
matical accident.

Yet another way of saying this is that as long as they have the
proper distributions, the bi( °, x) can be chosen in any way we please,

without any regard to each other, except that in the end bi must be

simultaneously measurable in both @ and x . Though the bi( ©, x)

must be correlated, what form the correlation takes is of no concern to us.
Finally, we venture to say that the main point of Kuhn's theorem

lies in the possibility of removing interstage rather than in-stage corre-

lationlfrom mixed strategies in games of perfect recall; we say this

because in Tinite games, in-stage correlation can always be removed from

strategies from which inter-stage correlation has been removed, even when

a game is not of perfect recall (as we remarked in the next to the last

paragraph). Of course in the seteup of [KJ there is no distinction between

stages; the above remark only makes sense when one introduces stages as

we have done.

11. The Range of a Mixed Strategy.

How large a set of pure strategies can be mixed by a mixed

strategy?

l6cfn the italicized statement sbove.
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In Section 3 we gave two definitions of "mixed strategy": The
"distribution” definition, which we subsequently abandoned, and which we
will henceforth call a mixedl strategy; and the "random variable" definition,

which we subsequently adopted, and which we henceforth call a mixed. strate-

2
gy. For mixedl strategies, the above guestion was answered in Section 3,
in the case in which the game has only one stage. Tn that case the pure
strategies coincide with the m— transformations from the (single)
information space X to the (single) action space ¥ , both X and Y
being coples of I . The answer that we gave is that a set F of pure
strategies constitutes the set of pure "ingredients"” of some mixed strategy
if and only if F is a subset of some Baire class. Here we wish to

examine the same question for mixed, strategies. For simplicity we again

2
agsume that there is only one stage, and use the same notations and
assumptions as above. The results we will cobtain may be easily extended by
the reader to the general case.

In keeping with the one-stage restriction, we may dencte a mixed2
strategy by m : @ x X —> ¥ . A.mixed2 strategy m and a member w of
the sample space determine a pure strategy m, » defined by mw(x) =m(w, x)
m,  is a "section" of m , and therefore indeed s pure strategy (i.e., an
m— transformation). We define the range of m +to be the set of all LN
as o ranges over  ; it is the set of pure stfategies that are mixed by
the mixed2 strategy m , or alternatively the set of pure strategies that

can occur when m is played. By a range we mean a subset of YX that is

the range of some mixed2 strategy.

Range Theorem. Every range is a subset of some Baire class; every Baire

class is a subset of some range.

This theorem does nct give a complete characterization of ranges,

similar to the complete characterization of admissible sets that was

.
B
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obtained for mixedl strategies. For example, I do not even know whether
every Balre class is a range, though I suspect that it is; on the other
hand, it is highly likely that there exist SUbsets of Baire classes that
are not ranges. What the range thecrem does do is give aﬁ “order of
magnitude” characterization, answering the question with which we began
this section: a range can be as large as a Baire class of arbitrarily high

order, but no larger.

Proof of the Range Theorem. For the proof of the first part, it suffices

to show that every range T is admissible, Tecause it then follows that
it must be a subset of a Baire class [A5 or Auy Theorem D], as we have
remarked above. Iet m be a mixed2 strategy, and F its range. For

every £ € F choose one member o of ¢ s such that m, = T ; let Q°

be the subspace of Q obtained in this way, with the subspace structure

(a set is measurable if and only if it is the intersection of Q' with an

m— set in Q ). Let m' be the restriction of m to Q' x X . Now the
restriction of an m— transformation to a subspace is still an m— trans-
formation; hence if we give Q! x X the subspace structure (io.e° as a
subspace of Q x X ), then m' will be an m— transformation. But it is
casily verified that the subspace structure on. ' x X 1is the same as the
product structure; hence m' is an = transformation also when Q' x X
has the product structure.

Q' and F are in one-one correspondence under the corres-
pondence ® <#=€>mw - Let us impose on F the structure corresponding to
that of Q' ; then Q' and F are isomorphic. Hence 0 x X and
F x X are also isomorphic. Iet us denote the isomorphism by
: FxX—>Q" x X ; we have Q(maf x) = (w, x) , where on the right

side w 1is uniquely defined because of the definition of Q¢ .
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Now @F(maf x) = mw(x) =m{w, x) =n' (o, x) = m”@(maf x) ; thus Pp =m'C .
But both m' and ¢ are w— transformations, and therefore Prn alsc is an
m— transformation. Therefore F is admissible, and the proof of the first
part is complete.

To prove the second part of the range thecrem, let us define a
transfinite sequence {F&} > Where «a ranges over all denumerable ordinals,
inductively as follows: Eb is the set of all continucus functions from
X to ¥ ; Fa is the set of all functions that are pointwise upper limits
of sequences of functions in lJB<Za FB - We will prove by induction on «

that Fa is a range; since the q'=th Baire class is clearly a subset of

Fa 5 this will complete our proof. The induction is started by

lemma G . FO is a range.

Proof. This is accomplished most easily if we use a result stated in [A,]

5
and proved in [A4]° Let us consider the uniform convergence topology on
FO s and let RO be the o-ring of m— sets generated by this topology;
our result says that RO is admissibleolY Now FO > in the uniform con-
vergence topology, is compact and separasble (in the topolegical sense);
hence it is s compact subspace of the Hilbert cube, and therefore in par-
ticular (FO
Hilbert cube ig a copy of I ; hence by a known theorem [M, Corollary 1,

5 RO) is a Borel subspace of the Hilbert cube. But the

p.1391], (Fb’ RO) is also a copy of I . To show that FO is a range
it is now only necessary to let ¢ : Q —> FO be a Borel isomorphism and
to define mw = y(w) . This completes the proof of the lemms.

For the inductive step, let o be a finite or denumerable ordi-

nal, and suppose it has been shown that FB is a range for all B<o.

17In fact, it says more, namely that it is & so-called "natural®
admissible structure; cf. [A59 AA] « Wé do not need this concept here.,
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Iet Q’l s £ m

s be a sequence of copies of Q , and let m

—l:)

be a sequence of mixed2 strategies such that each Fa with & < B8 is the

25

range of infinitely many of the mi . Now let 0 = Ql>< Oy X 00w

2
Define m : 9 xX —> ¥ by m(w, x) = li@ sup mi(ﬁig x) . TFrom the

. i= o
Tact that the m,  are n— transformetions, it follows easily that m is
an mw— transformation; furthermore it may be seen that the range of m
is exactly Fa - This completes the proof of the range theorem.

We conclude with a discussion of the relation between the two
definitions of mixed strategy. Suppose we are given a mixed2 strategy m .
We may try to define a mixedl strategy (Emy ij Hm) as follows: Fﬁ is
the range of m . To define the structure Bm of Eﬁ s We use the
function ¢ : Q —> F, egiven by V() = m, ; we define R to be the
ldentification structure on Eb s 1.e. G~CTE£ is measurable if and only
if Wnl(G) is measurable in Q . Finally, u is defined by
w(g) = w“’l(@) o The idea is that if m is thought of as a "random
variable,” then (Emy R s um) is the natural candidate for the "distribue
tion" of m

The trouble is that I cannot establish any correspondence between
the random variables and +the distributions. On the one hand, if m is a
mixedg strategy, then T cannot prove that Rm is an admissible structurel8
on Fﬁ 5 this means that (Fﬁg Rm, um) may not be a mixedl strategy. On
the other hand if s mixedl strategy (F, R, u) is given, it may not be
possible™ to find a mixed, strategy m such that (F, R, u) = (Fﬁy R M)

In other words, for all T know, some random varisbles may have no distri-

butions; and some distributions no corresponding random variables.

Though according to the range theorem Fﬁ is admissible, i.e.
has admissible structures.

19

I have no example for this, but am fairly convinced that one
exists.
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The second of these two "paradoxes” could have been expected:
while allowing (¥, R) +to be an arbitrary m— space, we restricted the
m— structure of 0 +to be a copy of I . The first of the two "paradoxes™
is more startling, and we would like to discuss some of the reasons for it.

To show that Bm is adwmissible, we would have to show that ¢@ is an
‘m

m— transformation. Tet p ¢ X—>X De the identity, and define

¥V xp ¢ 0 x X —> Eﬁ xX by (¥ xp)(w x) = (W(w), x) . Tt is easily

verified that P (V xp) =m , and hence (v x p)mlq%l —p T, Now let
m m
B be an m— subset of ¥ . Then mgl(B) is an m— subset of 0 XX

hence (V¥ x p)ElQ;l(B) also is. We know that (Em, Bm) is an identifi-
cation space of Qm under the identification map V¥ ; if we only knew that
(Fmj Rm) X X 1is an identification space of { x X wunder ¢ x o , we would
be finished, for it would then fellow that q%l(B) is meaéurable,'which is
exactly what we need. The proposition that ”i? V¥ is an identification
map and p an identity map, then ¥V x p is also an identification map”

is intuitively very compelling, but unfortunately we have not succeeded

in proving it. Iet us call this proposition "the identification space

hypothesis"”; only the following special cases are known to me:

Mackey's Resulth The identification space hypothesis holds if the domains

. ‘ 5
and images of both YV and p are amalytic“l m— spaces.

2
Ernest's Result 2 The identification space hypothesis holds if ¥ carries

- sets onto m— sets.

2OPrivate correspondence with Professor G. W. Mackey.

Elioeay iscmorphic with analybtic subspaces of T 5 ef. [M].

2Pr'ivate correspondence with Professor J. Ernest.




1)
2)

3)
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We summarize some of the problems left open by this secticn:
Characterize ranges of mixed2 strategies.

In particular, is every Baire clagg g range?

Characterize the mixedl strategies that correspond to mixed2
strategies.

Prove or disprove the identification space hypothesis.
Prove or disprove the Proposition that for every mixed

2

strategy m 5 (Fﬁﬂ ng um) is a :mixedl strategy.
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